Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146368

RESUMO

Cloud storage has become a keystone for organizations to manage large volumes of data produced by sensors at the edge as well as information produced by deep and machine learning applications. Nevertheless, the latency produced by geographic distributed systems deployed on any of the edge, the fog, or the cloud, leads to delays that are observed by end-users in the form of high response times. In this paper, we present an efficient scheme for the management and storage of Internet of Thing (IoT) data in edge-fog-cloud environments. In our proposal, entities called data containers are coupled, in a logical manner, with nano/microservices deployed on any of the edge, the fog, or the cloud. The data containers implement a hierarchical cache file system including storage levels such as in-memory, file system, and cloud services for transparently managing the input/output data operations produced by nano/microservices (e.g., a sensor hub collecting data from sensors at the edge or machine learning applications processing data at the edge). Data containers are interconnected through a secure and efficient content delivery network, which transparently and automatically performs the continuous delivery of data through the edge-fog-cloud. A prototype of our proposed scheme was implemented and evaluated in a case study based on the management of electrocardiogram sensor data. The obtained results reveal the suitability and efficiency of the proposed scheme.


Assuntos
Computação em Nuvem , Redes de Comunicação de Computadores , Eletrocardiografia , Internet
2.
Sensors (Basel) ; 22(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35808523

RESUMO

In emergent technologies, data integrity is critical for message-passing communications, where security measures and validations must be considered to prevent the entrance of invalid data, detect errors in transmissions, and prevent data loss. The SHA-256 algorithm is used to tackle these requirements. Current hardware architecture works present issues regarding real-time balance among processing, efficiency and cost, because some of them introduce significant critical paths. Besides, the SHA-256 algorithm itself considers no verification mechanisms for internal calculations and failure prevention. Hardware implementations can be affected by diverse problems, ranging from physical phenomena to interference or faults inherent to data spectra. Previous works have mainly addressed this problem through three kinds of redundancy: information, hardware, or time. To the best of our knowledge, pipelining has not been previously used to perform different hash calculations with a redundancy topic. Therefore, in this work, we present a novel hybrid architecture, implemented on a 3-stage pipeline structure, which is traditionally used to improve performance by simultaneously processing several blocks; instead, we propose using a pipeline technique for implementing hardware and time redundancies, analyzing hardware resources and performance to balance the critical path. We have improved performance at a certain clock speed, defining a data flow transformation in several sequential phases. Our architecture reported a throughput of 441.72 Mbps and 2255 LUTs, and presented an efficiency of 195.8 Kbps/LUT.

3.
PeerJ Comput Sci ; 7: e731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712800

RESUMO

In an Inter-Organizational Business Process (IOBP), independent organizations (collaborators) exchange messages to perform business transactions. With process mining, the collaborators could know what they are actually doing from process execution data and take actions for improving the underlying business process. However, process mining assumes that the knowledge of the entire process is available, something that is difficult to achieve in IOBPs since process execution data generally is not shared among the collaborating entities due to regulations and confidentiality policies (exposure of customers' data or business secrets). Additionally, there is an inherently lack-of-trust problem in IOBP as the collaborators are mutually untrusted and executed IOBP can be subject to dispute on counterfeiting actions. Recently, Blockchain has been suggested for IOBP execution management to mitigate the lack-of-trust problem. Independently, some works have suggested the use of Blockchain to support process mining tasks. In this paper, we study and address the problem of IOBP mining whose management and execution is supported by Blockchain. As contribution, we present an approach that takes advantage of Blockchain capabilities to tackle, at the same time, the lack-of-trust problem (management and execution) and confident execution data collection for process mining (discovery and conformance) of IOBPs. We present a method that (i) ensures the business rules for the correct execution and monitoring of the IOBP by collaborators, (ii) creates the event log, with data cleaning integrated, at the time the IOBP executes, and (iii) produces useful event log in XES and CSV format for the discovery and conformance checking tasks in process mining. By a set of experiments on real IOBPs, we validate our method and evaluate its impact in the resulting discovered models (fitness and precision metrics). Results revealed the effectiveness of our method to cope with both the lack-of-trust problem in IOBPs at the time that contributes to collect the data for process mining. Our method was implemented as a software tool available to the community as open-source code.

4.
Sensors (Basel) ; 20(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936004

RESUMO

Vehicular ad-hoc Networks (VANETs) are recognized as a cornerstone of Intelligent Transportation Systems (ITS) to enable the exchange of information among vehicles, which is crucial for the provision of safety-related and entertainment applications. However, practical useful realizations of VANETs are still missing, mainly because of the elevated costs and the lack of a final standardization. In this regard, the feasibility of using smartphones as nodes in VANETs has been explored focusing on small-scale deployments to mainly validate single-hop communication capabilities. Moreover, existing smartphone-based platforms do not consider two crucial requirements in VANETs, namely, multi-hop communication and the provision of security services in the message dissemination process. Furthermore, the problem of securing message dissemination in VANETs is generally analyzed through simulation tools, while performance evaluations on smart devices have not been reported so far. In this paper, we aim to fill this void by designing a fully on-device platform for secure multi-hop message dissemination. We address the multi-hop nature of message dissemination in VANETs by integrating a location-based protocol that enables the selection of relay nodes and retransmissions criteria. As a main distinction, the platform incorporates a novel certificateless cryptographic scheme for ensuring data integrity and nodes' authentication, suitable for VANETs lacking of infrastructure.

5.
Sensors (Basel) ; 19(3)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744202

RESUMO

Making Elliptic Curve Cryptography (ECC) available for the Internet of Things (IoT) and related technologies is a recent topic of interest. Modern IoT applications transfer sensitive information which needs to be protected. This is a difficult task due to the processing power and memory availability constraints of the physical devices. ECC mainly relies on scalar multiplication (kP)-which is an operation-intensive procedure. The broad majority of kP proposals in the literature focus on performance improvements and often overlook the energy footprint of the solution. Some IoT technologies-Wireless Sensor Networks (WSN) in particular-are critically sensitive in that regard. In this paper we explore energy-oriented improvements applied to a low-area scalar multiplication architecture for Binary Edwards Curves (BEC)-selected given their efficiency. The design and implementation costs for each of these energy-oriented techniques-in hardware-are reported. We propose an evaluation method for measuring the effectiveness of these optimizations. Under this novel approach, the energy-reducing techniques explored in this work contribute to achieving the scalar multiplication architecture with the most efficient area/energy trade-offs in the literature, to the best of our knowledge.

6.
PLoS One ; 13(1): e0190939, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29360824

RESUMO

Security is a crucial requirement in the envisioned applications of the Internet of Things (IoT), where most of the underlying computing platforms are embedded systems with reduced computing capabilities and energy constraints. In this paper we present the design and evaluation of a scalable low-area FPGA hardware architecture that serves as a building block to accelerate the costly operations of exponentiation and multiplication in [Formula: see text], commonly required in security protocols relying on public key encryption, such as in key agreement, authentication and digital signature. The proposed design can process operands of different size using the same datapath, which exhibits a significant reduction in area without loss of efficiency if compared to representative state of the art designs. For example, our design uses 96% less standard logic than a similar design optimized for performance, and 46% less resources than other design optimized for area. Even using fewer area resources, our design still performs better than its embedded software counterparts (190x and 697x).


Assuntos
Segurança Computacional/instrumentação , Internet , Dispositivos Eletrônicos Vestíveis , Algoritmos , Sistemas Computacionais , Humanos
7.
PLoS One ; 8(12): e81976, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349165

RESUMO

Digital fingerprinting is a technique that consists of inserting the ID of an authorized user in the digital content that he requests. This technique has been mainly used to trace back pirate copies of multimedia content such as images, audio, and video. This study proposes the use of state-of-the-art digital fingerprinting techniques in the context of restricted distribution of digital documents. In particular, the system proposed by Kuribayashi for multimedia content is investigated. Extensive simulations show the robustness of the proposed system against average collusion attack. Perceptual transparency of the fingerprinted documents is also studied. Moreover, by using an efficient Fast Fourier Transform core and standard computer machines it is shown that the proposed system is suitable for real-world scenarios.


Assuntos
Algoritmos , Segurança Computacional , Compressão de Dados/métodos , Reconhecimento Automatizado de Padrão , Análise de Fourier , Humanos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...